In games, as in and many other domains, design validation and testing is a huge challenge as systems are growing in size and manual testing is becoming infeasible. This paper proposes a new approach to automated game validation and testing. Our method leverages a data-driven imitation learning technique, which requires little effort and time and no knowledge of machine learning or programming, that designers can use to efficiently train game testing agents. We investigate the validity of our approach through a user study with industry experts. The survey results show that our method is indeed a valid approach to game validation and that data-driven programming would be a useful aid to reducing effort and increasing quality of modern playtesting. The survey also highlights several open challenges. With the help of the most recent literature, we analyze the identified challenges and propose future research directions suitable for supporting and maximizing the utility of our approach.
翻译:在游戏中,如同在许多其他领域一样,设计验证和测试是一个巨大的挑战,因为系统的规模正在扩大,人工测试正在变得不可行。本文件提出了一种自动游戏验证和测试的新方法。我们的方法利用了一种数据驱动的模拟学习技术,这种技术需要很少的努力和时间,没有机器学习或编程的知识,设计者可以使用这种技术来有效地培训游戏测试代理人。我们通过与行业专家进行用户研究来调查我们的方法的有效性。调查结果表明,我们的方法确实是一种有效的游戏验证方法,数据驱动的编程将有助于减少努力和提高现代游戏测试的质量。调查还突出了一些公开的挑战。在最新文献的帮助下,我们分析了已查明的挑战,并提出了适合支持和最大限度地利用我们的方法的未来研究方向。