Despite strong results on recognition and segmentation, current 3D visual pre-training methods often underperform on robotic manipulation. We attribute this gap to two factors: the lack of state-action-state dynamics modeling and the unnecessary redundancy of explicit geometric reconstruction. We introduce AFRO, a self-supervised framework that learns dynamics-aware 3D representations without action or reconstruction supervision. AFRO casts state prediction as a generative diffusion process and jointly models forward and inverse dynamics in a shared latent space to capture causal transition structure. To prevent feature leakage in action learning, we employ feature differencing and inverse-consistency supervision, improving the quality and stability of visual features. When combined with Diffusion Policy, AFRO substantially increases manipulation success rates across 16 simulated and 4 real-world tasks, outperforming existing pre-training approaches. The framework also scales favorably with data volume and task complexity. Qualitative visualizations indicate that AFRO learns semantically rich, discriminative features, offering an effective pre-training solution for 3D representation learning in robotics. Project page: https://kolakivy.github.io/AFRO/


翻译:尽管在识别与分割任务上表现优异,当前的三维视觉预训练方法在机器人操作任务中往往表现欠佳。我们将此差距归因于两个因素:缺乏状态-动作-状态动态建模,以及显式几何重建带来的不必要冗余。本文提出AFRO,一种无需动作或重建监督即可学习动态感知三维表征的自监督框架。AFRO将状态预测构建为生成式扩散过程,并在共享潜空间中联合建模前向与逆向动力学,以捕捉因果转移结构。为防止动作学习中的特征泄露,我们采用特征差分与逆向一致性监督,提升了视觉特征的质量与稳定性。当与Diffusion Policy结合时,AFRO在16个模拟任务和4个真实世界任务中显著提高了操作成功率,超越了现有预训练方法。该框架在数据量与任务复杂度增加时也展现出良好的可扩展性。定性可视化结果表明,AFRO能够学习语义丰富、判别性强的特征,为机器人领域的三维表征学习提供了有效的预训练解决方案。项目页面:https://kolakivy.github.io/AFRO/

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员