A tromino tiling problem is a packing puzzle where we are given a region of connected lattice squares and we want to decide whether there exists a tiling of the region using trominoes with the shape of an L. In this work we study a slight variation of the tromino tiling problem where some positions of the region have pegs and each tromino comes with a hole that can only be placed on top of the pegs. We present a characterization of this tiling problem with pegs using flow networks and show that (i) there exists a linear-time parsimonious reduction to the maximum-flow problem, and (ii) counting the number of such tilings can be done in linear-time. The proofs of both results contain algorithms that can then be used to decide the tiling of a region with pegs in $O(n)$ time.
翻译:Tromino 瓷砖问题是一个包装拼图, 我们在这里得到一个连接的 lattico 方块区域, 我们想要决定是否存在使用 L 形状的三氯米诺 砖块的砖块区域。 在这项工作中, 我们研究Tromino 瓷砖问题的微小变异, 该地区一些位置有钉子, 每一根马诺都有一个洞, 洞只能放在钉子上。 我们用流量网络的钉子来描述这个瓷砖问题, 并显示 (一) 最大流量问题存在线性时间的倾斜减少, 以及 (二) 计数这种计数可以在线性时间进行。 两种结果的证明都包含算法, 然后可以用以$( n) 时间来决定一个有钉子的区域的计数 。