We study the problem of graph clustering where the goal is to partition a graph into clusters, i.e. disjoint subsets of vertices, such that each cluster is well connected internally while sparsely connected to the rest of the graph. In particular, we use a natural bicriteria notion motivated by Kannan, Vempala, and Vetta which we refer to as {\em expander decomposition}. Expander decomposition has become one of the building blocks in the design of fast graph algorithms, most notably in the nearly linear time Laplacian solver by Spielman and Teng, and it also has wide applications in practice. We design algorithm for the parametrized version of expander decomposition, where given a graph $G$ of $m$ edges and a parameter $\phi$, our algorithm finds a partition of the vertices into clusters such that each cluster induces a subgraph of conductance at least $\phi$ (i.e. a $\phi$ expander), and only a $\widetilde{O}(\phi)$ fraction of the edges in $G$ have endpoints across different clusters. Our algorithm runs in $\widetilde{O}(m/\phi)$ time, and is the first nearly linear time algorithm when $\phi$ is at least $1/\log^{O(1)} m$, which is the case in most practical settings and theoretical applications. Previous results either take $\Omega(m^{1+o(1)})$ time, or attain nearly linear time but with a weaker expansion guarantee where each output cluster is guaranteed to be contained inside some unknown $\phi$ expander. Our result achieve both nearly linear running time and the strong expander guarantee for clusters. Moreover, a main technique we develop for our result can be applied to obtain a much better \emph{expander pruning} algorithm, which is the key tool for maintaining an expander decomposition on dynamic graphs. Finally, we note that our algorithm is developed from first principles based on relatively simple and basic techniques, thus making it very likely to be practical.
翻译:我们研究图组的问题,其中的目标是将图形分割成群集, 即: discompecial 子集, 这样每个群集在内部连接良好, 而与图表的其余部分连接很少。 特别是, 我们使用由 Kannan、 Vempala 和 Vetta 驱动的自然双标准概念, 我们称之为 ~em 扩张器分解 } 。 扩展器分解已成为快速图算法设计中的一个构件之一, 最显著的是 Spieman 和 Teng 的直线时间解析器( 直线时间 ), 并且它也有广泛的应用程序 。 我们设计了一个纯直线化的版本 。 我们设计了一个纯直线化的版本 。 以直线化的版本 美元, 以直线化的版本, 以美元 平面解析器, 以每平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平。