In this paper we propose some novel non-parametric prediction methods to perform short- and long-term aggregated forecasting for the log-returns of econometric datasets. The previous works in the regime of NoVaS model-free prediction are restricted to short-term forecasting only. Often practitioners and traders want to understand the future trend for a longer time into the future. This article serves two purposes. First it explores robustness of existing model-free methods for long-term predictions. Then it introduces, with systematic justification, some new methods that improve the existing ones for both short- and long-term predictions. We provide detailed discussions of the existing and new methods and challenge the new ones with extensive simulations and real-life data. Interesting features of our methods are that these entail significant improvements compared to existing methods for a longer horizon, strong volatile movements and shorter sample size.
翻译:在本文中,我们提出了一些新的非参数预测方法,用于对计量经济学数据集的日志回报进行短期和长期综合预测。以前在无VaS模型预测制度中开展的工作仅限于短期预测。通常从业人员和贸易商希望在未来较长的时间内了解未来趋势。这一条有两个目的。首先,探讨现有无模型长期预测方法的稳健性。然后,在有系统的理由的情况下,提出一些新方法,改进现有的短期和长期预测方法。我们详细讨论了现有的和新的方法,并以广泛的模拟和真实数据对新的方法提出挑战。我们方法的有趣特征是,这些方法与更长远的现有方法相比,需要大大改进,变化多变和抽样规模更短。