The concept of Nash equilibrium enlightens the structure of rational behavior in multi-agent settings. However, the concept is as helpful as one may compute it efficiently. We introduce the Cut-and-Play, an algorithm to compute Nash equilibria for non-cooperative simultaneous games where each player's objective is linear in their variables and bilinear in the other players' variables. Using the rich theory of integer programming, we alternate between constructing (i.) increasingly tighter outer approximations of the convex hull of each player's feasible set -- by using branching and cutting plane methods -- and (ii.) increasingly better inner approximations of these hulls -- by finding extreme points and rays of the convex hulls. In particular, we prove the correctness of our algorithm when these convex hulls are polyhedra. Our algorithm allows us to leverage the mixed integer programming technology to compute equilibria for a large class of games. Further, we integrate existing cutting plane families inside the algorithm, significantly speeding up equilibria computation. We showcase a set of extensive computational results for Integer Programming Games and simultaneous games among bilevel leaders. In both cases, our framework outperforms the state-of-the-art in computing time and solution quality.


翻译:纳什平衡的概念在多试剂环境下启发了理性行为的结构。 然而, 这一概念同样有用, 也可以有效计算它。 我们引入了“ 切线” 算法, 用于计算不合作同时玩游戏的纳什平衡, 每个玩家的目标在其变量中是线性, 而在其他玩家变量中是双线性。 我们使用丰富的整数编程理论, 在构建(i) 使用分支和切割平面方法, 使每个玩家的可操作船体的螺旋体的外部近似更加紧密, 以及(ii) 通过找到这些船体的极端点和光线, 使这些船体的内近近近(ii) 越来越好。 特别是, 当这些 convex 船体是多发体时, 我们证明了我们的算法是正确的。 我们的算法允许我们利用混合的组合编程技术, 来计算大类游戏的平衡。 此外, 我们把现有的切线家庭纳入算法中, 大大加速平衡计算。 我们展示了这些船体的内近近近近近近近近点结果结果, 和双级领导人的计算框架 。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
下载 | 最优化算法鸟视解读
专知
54+阅读 · 2018年12月17日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Geometry of Dependency Equilibria
Arxiv
0+阅读 · 2022年1月14日
Arxiv
0+阅读 · 2022年1月13日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
下载 | 最优化算法鸟视解读
专知
54+阅读 · 2018年12月17日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员