Multimodal sentiment analysis (MSA), which supposes to improve text-based sentiment analysis with associated acoustic and visual modalities, is an emerging research area due to its potential applications in Human-Computer Interaction (HCI). However, the existing researches observe that the acoustic and visual modalities contribute much less than the textual modality, termed as text-predominant. Under such circumstances, in this work, we emphasize making non-verbal cues matter for the MSA task. Firstly, from the resource perspective, we present the CH-SIMS v2.0 dataset, an extension and enhancement of the CH-SIMS. Compared with the original dataset, the CH-SIMS v2.0 doubles its size with another 2121 refined video segments with both unimodal and multimodal annotations and collects 10161 unlabelled raw video segments with rich acoustic and visual emotion-bearing context to highlight non-verbal cues for sentiment prediction. Secondly, from the model perspective, benefiting from the unimodal annotations and the unsupervised data in the CH-SIMS v2.0, the Acoustic Visual Mixup Consistent (AV-MC) framework is proposed. The designed modality mixup module can be regarded as an augmentation, which mixes the acoustic and visual modalities from different videos. Through drawing unobserved multimodal context along with the text, the model can learn to be aware of different non-verbal contexts for sentiment prediction. Our evaluations demonstrate that both CH-SIMS v2.0 and AV-MC framework enables further research for discovering emotion-bearing acoustic and visual cues and paves the path to interpretable end-to-end HCI applications for real-world scenarios.


翻译:多式情绪分析(MSA)旨在改进基于文字的情绪分析,同时采用相关的声学和视觉模式,这是一个新的研究领域,因为有可能在人-计算机互动(HCI)中应用,因此是一个新兴的研究领域。 然而,现有研究发现,声学和视觉模式的作用远远低于文字主导模式,在这种情况下,我们强调非语言提示对于管理任务很重要。首先,我们从资源角度介绍CH-SIMS v2.0 数据集,这是CH-SIMS的直观扩展和增强。与原始数据集相比,CH-SIMS v.0 将它的规模翻倍,与另外2121年的精细化视频段相比,配有单式和多式说明,并收集了1061个无标签的原始视频段,配有丰富的声学和视觉情感背景,以突出非语言感知感知的感知提示。 其次,从模型角度,从CH-SIMISv2.0的单式描述和不超级框架中受益。 与AV-MCS-Mix(A-MIS-M-deal-deal-de-de-de-deal-deal-de-lievol-de-de-de-de-de-lievol-de-de-deal-deal-deal-deal-deal-deal-deal-L 框架相比,可以将一个不同的理解、一种模拟、一种模拟、一种模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟、模拟

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员