Divergence time estimation is crucial to provide temporal signals for dating biologically important events, from species divergence to viral transmissions in space and time. With the advent of high-throughput sequencing, recent Bayesian phylogenetic studies have analyzed hundreds to thousands of sequences. Such large-scale analyses challenge divergence time reconstruction by requiring inference on highly-correlated internal node heights that often become computationally infeasible. To overcome this limitation, we explore a ratio transformation that maps the original N - 1 internal node heights into a space of one height parameter and N - 2 ratio parameters. To make analyses scalable, we develop a collection of linear-time algorithms to compute the gradient and Jacobian-associated terms of the log-likelihood with respect to these ratios. We then apply Hamiltonian Monte Carlo sampling with the ratio transform in a Bayesian framework to learn the divergence times in four pathogenic virus phylogenies: West Nile virus, rabies virus, Lassa virus and Ebola virus. Our method both resolves a mixing issue in the West Nile virus example and improves inference efficiency by at least 5-fold for the Lassa and rabies virus examples. Our method also makes it now computationally feasible to incorporate mixed-effects molecular clock models for the Ebola virus example, confirms the findings from the original study and reveals clearer multimodal distributions of the divergence times of some clades of interest.


翻译:差异时间估计对于为从物种差异到空间和时间的病毒传播等生物重要事件提供时间信号至关重要。 随着高通量测序的到来,最近巴伊西亚的植物遗传学研究已经分析了数百至数千个序列。这种大规模分析对差异时间的重建提出了挑战,要求对与高c有关的内部节点高度进行推断,而这些节点往往在计算上变得不可行。为了克服这一限制,我们探索了一种比率转换,将原来的N-1内部节点高度映射成一个高度参数和N-2比率参数的空间。为了进行可缩放的分析,我们收集了线性时间算法,以计算这些比率的梯度和与雅各布相关的日志类术语。然后,我们用汉密尔顿·蒙特卡洛取样法和贝伊斯框架的变换比率来了解四种致病病毒血源的差异时间:西尼罗病毒、狂犬病毒原病毒、拉萨病毒和埃博拉病毒。我们的方法在西尼罗病毒模型中解决了混合问题,并且改进了目前与血型病毒偏差率模型的混合分析方法,从而采用了最低5倍地将机能模型纳入了我们病毒的模型。

0
下载
关闭预览

相关内容

【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
61+阅读 · 2020年3月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
“CVPR 2020 接受论文列表 1470篇论文都在这了
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月23日
Arxiv
0+阅读 · 2021年12月23日
Arxiv
3+阅读 · 2020年11月26日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Learning to Importance Sample in Primary Sample Space
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员