A classical problem in city-scale cyber-physical systems (CPS) is resource allocation under uncertainty. Typically, such problems are modeled as Markov (or semi-Markov) decision processes. While online, offline, and decentralized approaches have been applied to such problems, they have difficulty scaling to large decision problems. We present a general approach to hierarchical planning that leverages structure in city-level CPS problems for resource allocation under uncertainty. We use the emergency response as a case study and show how a large resource allocation problem can be split into smaller problems. We then create a principled framework for solving the smaller problems and tackling the interaction between them. Finally, we use real-world data from Nashville, Tennessee, a major metropolitan area in the United States, to validate our approach. Our experiments show that the proposed approach outperforms state-of-the-art approaches used in the field of emergency response.
翻译:城市规模的网络物理系统(CPS)的一个典型问题是资源分配不确定。 通常,这类问题以Markov(或半Markov)决策程序为模范。 虽然在线、离线和分散处理方法已应用于这些问题,但很难将之推广到大型决策问题。 我们提出了一个总体的等级规划方法,利用城市一级CPS问题的结构在不确定性情况下进行资源分配。 我们用应急反应作为案例研究,并表明如何将大规模的资源分配问题分成小问题。 然后我们建立一个原则性框架,以解决较小的问题并解决它们之间的相互作用。 最后,我们使用来自美国主要大都市地区纳什维尔(田纳西)的真实世界数据来验证我们的方法。 我们的实验表明,拟议的方法优于应急反应领域采用的最新方法。