The CONTRACTION(vc) problem takes as input a graph $G$ on $n$ vertices and two integers $k$ and $d$, and asks whether one can contract at most $k$ edges to reduce the size of a minimum vertex cover of $G$ by at least $d$. Recently, Lima et al. [JCSS 2021] proved, among other results, that unlike most of the so-called blocker problems, CONTRACTION(vc) admits an XP algorithm running in time $f(d) \cdot n^{O(d)}$. They left open the question of whether this problem is FPT under this parameterization. In this article, we continue this line of research and prove the following results: 1. CONTRACTION(vc) is W[1]-hard parameterized by $k + d$. Moreover, unless the ETH fails, the problem does not admit an algorithm running in time $f(k + d) \cdot n^{o(k + d)}$ for any function $f$. In particular, this answers the open question stated in Lima et al. [JCSS 2021] in the negative. 2. It is NP-hard to decide whether an instance $(G, k, d)$ of CONTRACTION(vc) is a yes-instance even when $k = d$, hence enhancing our understanding of the classical complexity of the problem. 3. CONTRACTION(vc) can be solved in time $2^{O(d)} \cdot n^{k - d + O(1)}$. This XP algorithm improves the one of Lima et al. [JCSS 2021], which uses Courcelle's theorem as a subroutine and hence, the $f(d)$-factor in the running time is non-explicit and probably very large. On the other hard, it shows that when $k=d$, the problem is FPT parameterized by $d$ (or by $k$).


翻译:Comtraction( vc) 问题将一个以美元为顶点的GG美元和两个整数的Nqual 美元和美元作为输入输入, 并询问人们是否可以将最多以美元为单位的顶点覆盖率缩小于至少美元。 最近, Lima 等人 [JCSS 2021] 除其他结果外, 与大多数所谓的阻力问题不同, Comtraction( vc) 接受一个以美元计时运行的 XP 算法 $f(d)\ cdot n°O(d) 美元。 他们留下了一个问题, 这个问题是否在此参数下是 FPT 。 在本文章中, 我们继续这一研究线并证明以下结果: 1. Centrection(vc) 是W[1- hard 由美元 + d$。 此外, 除非 ET(k) 问题, 问题不会承认一个在美元(k) 美元 (c) 和 美元(k) 美元(c) 美元 (c) 美元 的算算算算一个时间运行的运算。

0
下载
关闭预览

相关内容

JCSS是结构相关风险和可靠性领域的一个委员会,1971年,协调五个国际土木工程协会(由CEB、CIB、fib、IABSE和RILEM组成)活动的联络委员会成立了结构安全联合委员会JCSS,旨在提高结构安全的一般知识。官网链接:https://www.jcss.byg.dtu.dk/about_jcss
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
心之所向的无尽蓝,vivo S12 Pro「屿蓝」
ZEALER订阅号
0+阅读 · 2022年1月27日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
心之所向的无尽蓝,vivo S12 Pro「屿蓝」
ZEALER订阅号
0+阅读 · 2022年1月27日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员