The CONTRACTION(vc) problem takes as input a graph $G$ on $n$ vertices and two integers $k$ and $d$, and asks whether one can contract at most $k$ edges to reduce the size of a minimum vertex cover of $G$ by at least $d$. Recently, Lima et al. [JCSS 2021] proved, among other results, that unlike most of the so-called blocker problems, CONTRACTION(vc) admits an XP algorithm running in time $f(d) \cdot n^{O(d)}$. They left open the question of whether this problem is FPT under this parameterization. In this article, we continue this line of research and prove the following results: 1. CONTRACTION(vc) is W[1]-hard parameterized by $k + d$. Moreover, unless the ETH fails, the problem does not admit an algorithm running in time $f(k + d) \cdot n^{o(k + d)}$ for any function $f$. In particular, this answers the open question stated in Lima et al. [JCSS 2021] in the negative. 2. It is NP-hard to decide whether an instance $(G, k, d)$ of CONTRACTION(vc) is a yes-instance even when $k = d$, hence enhancing our understanding of the classical complexity of the problem. 3. CONTRACTION(vc) can be solved in time $2^{O(d)} \cdot n^{k - d + O(1)}$. This XP algorithm improves the one of Lima et al. [JCSS 2021], which uses Courcelle's theorem as a subroutine and hence, the $f(d)$-factor in the running time is non-explicit and probably very large. On the other hard, it shows that when $k=d$, the problem is FPT parameterized by $d$ (or by $k$).
翻译:Comtraction( vc) 问题将一个以美元为顶点的GG美元和两个整数的Nqual 美元和美元作为输入输入, 并询问人们是否可以将最多以美元为单位的顶点覆盖率缩小于至少美元。 最近, Lima 等人 [JCSS 2021] 除其他结果外, 与大多数所谓的阻力问题不同, Comtraction( vc) 接受一个以美元计时运行的 XP 算法 $f(d)\ cdot n°O(d) 美元。 他们留下了一个问题, 这个问题是否在此参数下是 FPT 。 在本文章中, 我们继续这一研究线并证明以下结果: 1. Centrection(vc) 是W[1- hard 由美元 + d$。 此外, 除非 ET(k) 问题, 问题不会承认一个在美元(k) 美元 (c) 和 美元(k) 美元(c) 美元 (c) 美元 的算算算算一个时间运行的运算。