The inverse probability weighting (IPW) method is used to handle attrition in association analyses derived from cohort studies. It consists in weighting the respondents at a given follow-up by their inverse probability to participate. Weights are estimated first and then used in a weighted association model. When the IPW method is used, instead of using a so-called na{\"i}ve variance estimator, the literature recommends using a robust variance estimator. However, the latter may overestimate the variance because the weights are considered known rather than estimated. In this note, we develop, by a linearization technique, an estimator accounting for the weight estimation phase and explain how it differs from na{\"i}ve and robust variance estimators. We compare the three variance estimators through simulations under several MAR and MNAR scenarios. We found that both the robust and linearized variance estimators were approximately unbiased, even in MNAR scenarios. The naive variance estimator severely underestimated the variance. We encourage researchers to be careful with variance estimation when using the IPW method, avoiding na{\"i}ve estimator and opting for a robust or linearized estimator. R and SAS codes are provided to implement them in their own studies.


翻译:使用反差概率加权法( IPW) 来处理群体研究得出的关联分析中的自然减值。 它包含在特定的后续跟踪中按其参与的反差概率加权答卷人。 先估计重量,然后在加权组合模型中使用。 当使用IPW方法时, 而不是使用所谓的“ na' i” 差异估计器, 文献建议使用一个强大的差异估计器。 但是, 后者可能高估差异, 因为重量被认为是已知的, 而不是估计的。 在本说明中, 我们通过线性化技术来计算重量估计阶段, 并解释它如何不同于 na' i 和 稳健的差异估计器。 我们通过模拟使用三种差异估计器, 而不是使用所谓的“ na' i i” 和 MARAR 参数。 我们发现, 稳健的和线性差异估计器大致是公正的, 即使在 MNAR 情况下也是如此。 天性差异估计器严重低估了差异。 我们鼓励研究人员在使用 IPW 方法时谨慎考虑差异估计, 避免 NA_ 和 SASA 的直线性和选择器, 提供它们为直线性和 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年4月25日
Arxiv
0+阅读 · 2021年6月28日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
3+阅读 · 2019年4月25日
Top
微信扫码咨询专知VIP会员