Generative adversarial networks (GANs) were initially proposed to generate images by learning from a large number of samples. Recently, GANs have been used to emulate complex physical systems such as turbulent flows. However, a critical question must be answered before GANs can be considered trusted emulators for physical systems: do GANs-generated samples conform to the various physical constraints? These include both deterministic constraints (e.g., conservation laws) and statistical constraints (e.g., energy spectrum of turbulent flows). The latter have been studied in a companion paper (Wu et al., Enforcing statistical constraints in generative adversarial networks for modeling chaotic dynamical systems. Journal of Computational Physics. 406, 109209, 2020). In the present work, we enforce deterministic yet imprecise constraints on GANs by incorporating them into the loss function of the generator. We evaluate the performance of physics-constrained GANs on two representative tasks with geometrical constraints (generating points on circles) and differential constraints (generating divergence-free flow velocity fields), respectively. In both cases, the constrained GANs produced samples that conform to the underlying constraints rather accurately, even though the constraints are only enforced up to a specified interval. More importantly, the imposed constraints significantly accelerate the convergence and improve the robustness in the training, indicating that they serve as a physics-based regularization. These improvements are noteworthy, as the convergence and robustness are two well-known obstacles in the training of GANs.


翻译:最初提议生成对抗性网络(GANs)是为了通过从大量样本中学习来生成图像。最近,GANs被用于模仿复杂的物理系统,如动荡流动等。然而,在将GANs作为物理系统可信赖的模拟器之前,必须回答一个关键问题:GANs产生的样本是否符合各种物理限制?其中包括确定性制约(例如,保护法)和统计限制(例如,动荡流动的能源范围),后者在一份配套文件中进行了研究(Wu 等人,在模拟混乱动态系统的基因对抗性网络中加强统计限制。《计算物理杂志》406、109209、2020)在目前的工作中,我们是否对GANs实施确定性但不精确的限制,将其纳入发电机的损失功能;我们评估受物理限制的GANs在两种代表性任务上的绩效(例如,气流流动的能量范围)和差异性制约(造成不均匀流动速度场),这两份文件都分别表明GAN的趋同性限制是精确的,尽管不断加强的精确性制约,但GAN的趋近的样品也表明,这些限制是精确地提高了GAN的趋同性。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月11日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员