In this work, an adaptive edge element method is developed for an H(curl)-elliptic constrained optimal control problem. We use the lowest-order Nedelec's edge elements of first family and the piecewise (element-wise) constant functions to approximate the state and the control, respectively, and propose a new adaptive algorithm with error estimators involving both residual-type error estimators and lower-order data oscillations. By using a local regular decomposition for H(curl)-functions and the standard bubble function techniques, we derive the a posteriori error estimates for the proposed error estimators. Then we exploit the convergence properties of the orthogonal $L^2$-projections and the mesh-size functions to demonstrate that the sequences of the discrete states and controls generated by the adaptive algorithm converge strongly to the exact solutions of the state and control in the energy-norm and $L^2$-norm, respectively, by first achieving the strong convergence towards the solution to a limiting control problem. Three-dimensional numerical experiments are also presented to confirm our theoretical results and the quasi-optimality of the adaptive edge element method.


翻译:在这项工作中,为H(curl)-椭圆限制最佳控制问题开发了适应性边缘元素方法。我们使用最底层的奈德莱茨第一家族和小节(元素-元素-)常量函数边缘元素分别接近状态和控制,并提出了新的适应性算法,其中含有包括残余类型误差估计器和较低顺序数据振荡器的误差估计器。我们利用H(curl)函数和标准泡泡函数技术的局部常规分解法,得出拟议误差估计。然后,我们利用正方圆 $L ⁇ 2$-预测和线形大小功能的趋同性功能,以证明由适应性算法产生的离散状态和控制的序列与能源-中度和控制的精确解决办法和美元/美元-诺姆的精确解决办法紧密结合。我们首先就限制控制问题的解决方案达成强烈趋同。三维数值实验还证实了我们的理论性结果和准边际模型。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
【CVPR2019正式公布】行人重识别论文 附下载链接
极市平台
15+阅读 · 2019年4月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
Arxiv
0+阅读 · 2021年8月30日
Deep Learning for Constrained Utility Maximisation
Arxiv
0+阅读 · 2021年8月27日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
【CVPR2019正式公布】行人重识别论文 附下载链接
极市平台
15+阅读 · 2019年4月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
Top
微信扫码咨询专知VIP会员