We study the shortest vector lengths in module lattices over arbitrary number fields, with an emphasis on cyclotomic fields. In particular, we sharpen the techniques of arXiv:2308.15275v2 to establish improved results for the variance of the number of lattice vectors of bounded Euclidean norm in a random module lattice. We then derive tight probabilistic bounds for the shortest vector lengths for several notions of random module lattice.
翻译:我们研究了任意数域上模格的最短向量长度,重点考察分圆域情形。特别地,我们改进了arXiv:2308.15275v2中的技术,针对随机模格中欧几里得范数有界的格向量数量的方差建立了更强的结果。随后,我们针对几种随机模格的定义,推导了最短向量长度的紧致概率界。