Consider the set $E(D, N)$ of all bivariate exponential polynomials $$ f(\xi, \eta) = \sum_{j=1}^n p_j(\xi, \eta) e^{2\pi i (x_j\xi+y_j\eta)}, $$ where the polynomials $p_j \in \mathbb{C}[\xi, \eta]$ have degree $<D$, $n\le N$ and where $x_j, y_j \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$. We find a set $A \subseteq \mathbb{Z}^2$ that depends on $N$ and $D$ only and is of size $O(D^2 N \log N)$ such that the values of $f$ on $A$ determine $f$. Notice that the size of $A$ is only larger by a logarithmic quantity than the number of parameters needed to write down $f$. We use this in order to prove some uniqueness results about polygonal regions given a small set of samples of the Fourier Transform of their indicator function. If the number of different slopes of the edges of the polygonal region is $\le k$ then the region is determined from a predetermined set of Fourier samples that depends only on $k$ and the maximum number of vertices $N$ and is of size $O(k^2 N \log N)$. In the particular case where all edges are known to be parallel to the axes the polygonal region is determined from a set of $O(N \log N)$ Fourier samples that depends on $N$ only. Our methods are non-constructive.
翻译:考虑所有二元指数多项式构成的集合 $E(D, N)$,其中 $$ f(\xi, \eta) = \sum_{j=1}^n p_j(\xi, \eta) e^{2\pi i (x_j\xi+y_j\eta)}, $$ 多项式 $p_j \in \mathbb{C}[\xi, \eta]$ 的次数 $<D$,$n\le N$,且 $x_j, y_j \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$。我们找到一个仅依赖于 $N$ 和 $D$ 的集合 $A \subseteq \mathbb{Z}^2$,其大小为 $O(D^2 N \log N)$,使得 $f$ 在 $A$ 上的取值能够唯一确定 $f$。注意到 $A$ 的大小仅比描述 $f$ 所需参数的数量多出一个对数因子。我们利用这一结果证明关于多边形区域的一些唯一性定理:给定其指示函数傅里叶变换的少量采样点,即可确定该区域。若多边形区域各边的不同斜率数量 $\le k$,则该区域可由一个预先确定的傅里叶采样集合唯一确定,该集合仅依赖于 $k$ 和最大顶点数 $N$,且大小为 $O(k^2 N \log N)$。特别地,若已知所有边均与坐标轴平行,则该多边形区域可由一个仅依赖于 $N$ 且大小为 $O(N \log N)$ 的傅里叶采样集合唯一确定。本文所提方法为非构造性方法。