Consider the relationship between the FDA (the principal) and a pharmaceutical company (the agent). The pharmaceutical company wishes to sell a product to make a profit, and the FDA wishes to ensure that only efficacious drugs are released to the public. The efficacy of the drug is not known to the FDA, so the pharmaceutical company must run a costly trial to prove efficacy to the FDA. Critically, the statistical protocol used to establish efficacy affects the behavior of a strategic, self-interested pharmaceutical company; a lower standard of statistical evidence incentivizes the pharmaceutical company to run more trials for drugs that are less likely to be effective, since the drug may pass the trial by chance, resulting in large profits. The interaction between the statistical protocol and the incentives of the pharmaceutical company is crucial to understanding this system and designing protocols with high social utility. In this work, we discuss how the principal and agent can enter into a contract with payoffs based on statistical evidence. When there is stronger evidence for the quality of the product, the principal allows the agent to make a larger profit. We show how to design contracts that are robust to an agent's strategic actions, and derive the optimal contract in the presence of strategic behavior.


翻译:制药公司希望出售一种产品以牟利,而林业发展局希望确保只有有效药品才向公众发放。药品的功效并不为林业发展局所知,因此制药公司必须进行代价高昂的试验,以证明林业发展局的功效。关键是,用于确定功效的统计协议影响到一个具有战略意义、自利的制药公司的行为;较低的统计证据标准激励制药公司对不太有效的药物进行更多的试验,因为药物可能通过偶然试验,从而获得巨额利润。统计协议与制药公司的奖励之间的相互作用对于了解这个制度和设计高社会效用的协议至关重要。在这项工作中,我们讨论了主要和代理公司如何根据统计证据签订有偿合同。当产品质量有更强有力的证据时,主要公司允许该代理公司获得更大的利润。我们展示了如何设计对代理人的战略行动具有活力的合同,并在有战略行为的情况下订立最佳合同。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年7月1日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
11+阅读 · 2021年3月25日
VIP会员
相关VIP内容
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员