Reliable and frequent population estimation is key for making policies around vaccination and planning infrastructure delivery. Since censuses lack the spatio-temporal resolution required for these tasks, census-independent approaches, using remote sensing and microcensus data, have become popular. We estimate intercensal population count in two pilot districts in Mozambique. To encourage sustainability, we assess the feasibility of using publicly available datasets to estimate population. We also explore transfer learning with existing annotated datasets for predicting building footprints, and training with additional `dot' annotations from regions of interest to enhance these estimations. We observe that population predictions improve when using footprint area estimated with this approach versus only publicly available features.
翻译:可靠和频繁的人口估计是制定有关接种疫苗和规划基础设施交付的政策的关键。由于普查缺乏这些任务所需的时空解决方案,利用遥感和微人口普查数据进行独立普查的做法已变得很普遍。我们估计莫桑比克两个试点地区的普查间人口计数。为了鼓励可持续性,我们评估使用公开可得的数据集估算人口的可行性。我们还利用现有附加说明的数据集探索转移学习,以预测建筑足迹,以及培训时使用感兴趣的区域的额外“点”说明,以加强这些估计。我们观察到,使用这种方法估计的足迹面积而使用仅公开提供的特征,人口预测会得到改善。