In this paper, we introduce a psychology-inspired approach to model and predict the music genre preferences of different groups of users by utilizing human memory processes. These processes describe how humans access information units in their memory by considering the factors of (i) past usage frequency, (ii) past usage recency, and (iii) the current context. Using a publicly available dataset of more than a billion music listening records shared on the music streaming platform Last.fm, we find that our approach provides significantly better prediction accuracy results than various baseline algorithms for all evaluated user groups, i.e., (i) low-mainstream music listeners, (ii) medium-mainstream music listeners, and (iii) high-mainstream music listeners. Furthermore, our approach is based on a simple psychological model, which contributes to the transparency and explainability of the calculated predictions.
翻译:在本文中,我们引入了一种心理学启发的方法,通过利用人类记忆过程来模拟和预测不同用户群体对音乐的偏好。这些过程通过考虑(一)过去使用频率,(二)过去使用频率,(二)过去使用时间,(三)当前背景等因素来描述人类如何在记忆中访问信息单位。我们使用在音乐流平台Last.fm上共享的10亿多张音乐监听记录的公开数据集,发现我们的方法比所有被评估的用户群体,即(一) 低中流音乐听众,(二) 中流音乐听众,(三) 高流音乐听众,提供的预测准确性比各种基线算法要好得多。此外,我们的方法以简单的心理模型为基础,有助于计算预测的透明度和可解释性。