With the preponderance of pretrained deep learning models available off-the-shelf from model banks today, finding the best weights to fine-tune to your use-case can be a daunting task. Several methods have recently been proposed to find good models for transfer learning, but they either don't scale well to large model banks or don't perform well on the diversity of off-the-shelf models. Ideally the question we want to answer is, "given some data and a source model, can you quickly predict the model's accuracy after fine-tuning?" In this paper, we formalize this setting as "Scalable Diverse Model Selection" and propose several benchmarks for evaluating on this task. We find that existing model selection and transferability estimation methods perform poorly here and analyze why this is the case. We then introduce simple techniques to improve the performance and speed of these algorithms. Finally, we iterate on existing methods to create PARC, which outperforms all other methods on diverse model selection. We have released the benchmarks and method code in hope to inspire future work in model selection for accessible transfer learning.
翻译:由模型银行提供现成的经过事先训练的深层次学习模型占了绝大多数, 找到最佳重量来微调你的使用案例可能是一项艰巨的任务。 最近提出了好几种方法来寻找良好的转移学习模型, 但是它们不是向大型模型银行推广, 也不是在现成模型的多样性上表现良好。 理想的情况是, 我们想要回答的问题是, “ 提供一些数据和源模型, 你能在微调后快速预测模型的准确性吗? ” 在本文中, 我们正式确定这个设置为“ 可扩展的多元模型选择 ”, 并为评估这一任务提出若干基准。 我们发现, 现有的模型选择和可转移性估算方法在这里效果不佳, 分析为什么情况如此如此。 我们然后采用简单的方法来改进这些算法的性能和速度。 最后, 我们仔细研究现有的方法, 来创建PARC, 它超越了各种模型选择的所有其他方法。 我们发布了基准和方法代码, 希望激励今后在可获取的转移学习模型选择中的工作。