Reverse derivative categories (RDCs) have recently been shown to be a suitable semantic framework for studying machine learning algorithms. Whereas emphasis has been put on training methodologies, less attention has been devoted to particular \emph{model classes}: the concrete categories whose morphisms represent machine learning models. In this paper we study presentations by generators and equations of classes of RDCs. In particular, we propose \emph{polynomial circuits} as a suitable machine learning model. We give an axiomatisation for these circuits and prove a functional completeness result. Finally, we discuss the use of polynomial circuits over specific semirings to perform machine learning with discrete values.
翻译:反向衍生物类别(RDCs)最近被证明是研究机器学习算法的适当语义框架。 虽然强调培训方法,但不太重视特定的 emph{ 模范类 : 具体类别,其形态代表机器学习模式。 在本文中,我们研究发电机的演示和RDC类别等式。 特别是, 我们提议 \ emph{ polynomical routes} 作为一种合适的机器学习模式。 我们对这些电路进行解析, 并证明是功能完整的结果。 最后, 我们讨论在特定半环上使用多环路进行离散值机器学习。