Consider a graph where each of the $n$ nodes is either in state $\mathcal{R}$ or $\mathcal{B}$. Herein, we analyze the synchronous $k$-Majority dynamics, where in each discrete-time round nodes simultaneously sample $k$ neighbors uniformly at random with replacement and adopt the majority state among the nodes in the sample (breaking ties uniformly at random). Differently from previous work, we study the robustness of the $k$-Majority in maintaining a majority, that we consider $\mathcal{R}$ w.l.o.g., when the dynamics is subject to two forms of adversarial noise, or bias, toward state $\mathcal{B}$. We consider an external agent that wants to subvert the initial majority and, in each round, either tries to alter the communication between each pair of nodes transmitting state $\mathcal{B}$ (first form of bias), or tries to corrupt each node directly making it update to $\mathcal{B}$ (second form of bias), with a probability of success $p$. Our results show a phase transition in both forms of bias and on the same critical value. By considering initial configurations in which each node has probability $q \in (\frac{1}{2},1]$ of being in state $\mathcal{R}$, we prove that for every $k\geq3$ there exists a critical value $p_{k,q}^*$ such that, with high probability: if $p>p_{k,q}^*$, the external agent is able to subvert the initial majority within a constant number of rounds; if $p<p_{k,q}^*$, the external agent needs at least a superpolynomial number of rounds to subvert the initial majority.
翻译:考虑一个图表, 美元节点中的每一个都是以美元=mathcal{R}美元或美元=mathcal{B}美元=美元。 在这里, 我们分析同步的 $k 美元- Majority 动态, 在每个离散的圆点节点中, 我们分析同步的 $k 美元 美元- Majority 动态, 在每个离散的圆点点中, 以随机替换的方式同时取样 $k 邻居 美元, 并在抽样的节点中采用多数状态( 以随机方式统一打破关系 ) 。 与以往的工作不同, 我们研究美元- Majority 的稳健性在保持多数, 我们考虑美元=mathcal$$ $@R} 美元=l. g。 当动态受到两种形式的对抗性噪音或偏差时, 我们考虑外部的概率, 以美元=qrq\\\\ 美元=xxxxx 。