This paper addresses the problem of infant cry detection in real-world settings. While most existing cry detection models have been tested with data collected in controlled settings, the extent to which they generalize to noisy and lived environments, i.e., people's homes, is unclear. In this paper, we evaluated several established machine learning-based approaches as well as a promising modeling strategy leveraging both deep spectrum and acoustic features. This model was able to recognize crying events with F1 score 0.630 (Precision: 0.697, Recall: 0.567), showing improved external validity over existing methods at cry detection in everyday real-world settings. As part of our evaluation, we collected and annotated a novel dataset of infant crying compiled from over 780 hours of high-quality labeled real-world audio data, captured via recorders worn by infants in their homes, which we make publicly available. Our findings confirmed that a cry detection model trained on in-lab data underperforms when presented with real-world data (in-lab test F1: 0.656, real-world test F1: 0.243), highlighting the value of our new dataset and model.


翻译:本文论述现实世界环境中的婴儿哭泣探测问题。 虽然大多数现有的哭泣探测模型已经用在受控环境中收集的数据进行了测试,但是它们向吵闹和活生生的环境(即人们的家)推广的程度还不清楚。在本文件中,我们评估了几个已经建立的机器学习方法,以及利用深频谱和声学特点的有希望的模型战略。这个模型能够识别F1分0.630的哭泣事件(精确度:0.697,回想起:0.567),表明在现实世界环境中哭泣检测的现有方法的外部有效性有所提高。作为我们评估的一部分,我们收集并附加了一套关于婴儿哭泣的新数据集,该数据集来自780多小时的高质量贴标签真实世界听力数据,通过婴儿在家中戴的录音机收集,我们公开提供这些数据。我们的调查结果证实,在用真实世界数据(在实验室测试F1:0.656,真实世界测试F1:0.243)时,对实验室内数据底部数据进行了培训的哭泣探测模型。我们的新数据集和模型的价值突出。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
已删除
将门创投
3+阅读 · 2017年9月12日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
0+阅读 · 2021年12月1日
Arxiv
13+阅读 · 2021年3月3日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
24+阅读 · 2020年3月11日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
7+阅读 · 2018年12月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
已删除
将门创投
3+阅读 · 2017年9月12日
相关论文
Arxiv
0+阅读 · 2021年12月2日
Arxiv
0+阅读 · 2021年12月1日
Arxiv
13+阅读 · 2021年3月3日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
24+阅读 · 2020年3月11日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
7+阅读 · 2018年12月5日
Top
微信扫码咨询专知VIP会员