Machine learning has advanced dramatically, narrowing the accuracy gap to humans in multimodal tasks like visual question answering (VQA). However, while humans can say "I don't know" when they are uncertain (i.e., abstain from answering a question), such ability has been largely neglected in multimodal research, despite the importance of this problem to the usage of VQA in real settings. In this work, we promote a problem formulation for reliable VQA, where we prefer abstention over providing an incorrect answer. We first enable abstention capabilities for several VQA models, and analyze both their coverage, the portion of questions answered, and risk, the error on that portion. For that, we explore several abstention approaches. We find that although the best performing models achieve over 71% accuracy on the VQA v2 dataset, introducing the option to abstain by directly using a model's softmax scores limits them to answering less than 8% of the questions to achieve a low risk of error (i.e., 1%). This motivates us to utilize a multimodal selection function to directly estimate the correctness of the predicted answers, which we show can increase the coverage by, for example, 2.4x from 6.8% to 16.3% at 1% risk. While it is important to analyze both coverage and risk, these metrics have a trade-off which makes comparing VQA models challenging. To address this, we also propose an Effective Reliability metric for VQA that places a larger cost on incorrect answers compared to abstentions. This new problem formulation, metric, and analysis for VQA provide the groundwork for building effective and reliable VQA models that have the self-awareness to abstain if and only if they don't know the answer.


翻译:机器学习进展显著,缩小了在视觉问答(VQA)等多式联运任务中对人类的准确性差距。然而,虽然人类在不确定时可以说“我不知道”(即不回答一个问题),但这种能力在多式联运研究中在很大程度上被忽略,尽管这个问题对在真实环境中使用VQA很重要。在这项工作中,我们提倡为可靠的VQA制定问题配方,我们更愿意不提供错误的答案。我们首先为若干VQA 模型提供弃权能力,并分析其覆盖范围、回答的问题部分和风险,以及这一部分的错误。为此,我们探索了几种弃权方法。我们发现,尽管最佳执行模式在VQA v2数据集上实现了71%的准确性,但引入了直接使用模型软通分数来回答不到8%的问题的选项,从而降低了错误风险(即1 % ) 。这促使我们利用一个可靠的多式联运选择功能来直接估计预测答案的正确性,即回答的问题部分和风险部分,我们用QA 来比较Q Q 质量 的准确性范围,我们要用一个有效的指标来分析。

0
下载
关闭预览

相关内容

视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻译为中文:一个VQA系统以一张图片和一个关于这张图片形式自由、开放式的自然语言问题作为输入,以生成一条自然语言答案作为输出。简单来说,VQA就是给定的图片进行问答。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
162+阅读 · 2020年1月16日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年9月26日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
15+阅读 · 2021年11月19日
Arxiv
39+阅读 · 2021年11月11日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员