We study the problem of allocating a set of indivisible goods among agents with 2-value additive valuations. Our goal is to find an allocation with maximum Nash social welfare, i.e., the geometric mean of the valuations of the agents. We give a polynomial-time algorithm to find a Nash social welfare maximizing allocation when the valuation functions are integrally 2-valued, i.e., each agent has a value either $1$ or $p$ for each good, for some positive integer $p$. We then extend our algorithm to find a better approximation factor for general 2-value instances.
翻译:我们研究在具有2价值添加值估价的代理商之间分配一组不可分割的商品的问题。我们的目标是找到一个以纳什最高社会福利额(即代理商估值的几何平均值)为单位的分配。我们给出了一种多元时间算法,以在估值功能整体价值为2值时找到纳什社会福利最大化分配,即每个代理商对每件商品都有价值1美元或1美元,对正整数为1美元。然后我们扩展我们的算法,为一般2价值案例找到更好的近似系数。