A valued stochastic blockmodel (SBM) is a general way to view networked data in which nodes are grouped into blocks and links between them are measured by counts or labels. This family allows for varying dyad sampling schemes, thereby including the classical, Poisson, and labeled SBMs, as well as those in which some edge observations are censored. This paper addresses the question of testing goodness-of-fit of such non-Bernoulli SBMs, focusing in particular on finite-sample tests. We derive explicit Markov bases moves necessary to generate samples from reference distributions and define goodness-of-fit statistics for determining model fit, comparable to those in the literature for related model families. For the labeled SBM, which includes in particular the censored-edge model, we study the asymptotic behavior of said statistics. One of the main purposes of testing goodness-of-fit of an SBM is to determine whether block membership of the nodes influences network formation. Power and Type 1 error rates are verified on simulated data. Additionally, we discuss the use of asymptotic results in selecting the number of blocks under the latent-block modeling assumption. The method derived for Poisson SBM is applied to ecological networks of host-parasite interactions. Our data analysis conclusions differ in selecting the number of blocks for the species from previous results in the literature.
翻译:暂无翻译