Navigation is one of the fundamental features of a autonomous robot. And the ability of long-term navigation with semantic instruction is a `holy grail` goals of intelligent robots. The development of 3D simulation technology provide a large scale of data to simulate the real-world environment. The deep learning proves its ability to robustly learn various embodied navigation tasks. However, deep learning on embodied navigation is still in its infancy due to the unique challenges faced by the navigation exploration and learning from partial observed visual input. Recently, deep learning in embodied navigation has become even thriving, with numerous methods have been proposed to tackle different challenges in this area. To give a promising direction for future research, in this paper, we present a comprehensive review of embodied navigation tasks and the recent progress in deep learning based methods. It includes two major tasks: target-oriented navigation and the instruction-oriented navigation.


翻译:3D模拟技术的开发为模拟真实世界环境提供了大范围的数据。深层次的学习证明它有能力强有力地学习各种包含的导航任务。然而,由于导航探索和部分观测到的视觉输入所面临的独特挑战,关于体现的导航的深层次学习仍然处于萌芽阶段。最近,在体现的导航中深层的学习变得甚至更加蓬勃,提出了应对该领域不同挑战的多种方法。为了给未来研究提供有希望的方向,我们在本文件中对包含的导航任务和最近在深层次学习方法方面取得的进展进行全面审查,其中包括两项主要任务:面向目标的导航和面向指示的导航。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
24+阅读 · 2021年6月25日
Review: deep learning on 3D point clouds
Arxiv
5+阅读 · 2020年1月17日
Deep Learning for 3D Point Clouds: A Survey
Arxiv
3+阅读 · 2019年12月27日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员