We exactly settle the complexity of graph realization, graph rigidity, and graph global rigidity as applied to three types of graphs: "globally noncrossing" graphs, which avoid crossings in all of their configurations; matchstick graphs, with unit-length edges and where only noncrossing configurations are considered; and unrestricted graphs (crossings allowed) with unit edge lengths (or in the global rigidity case, edge lengths in $\{1,2\}$). We show that all nine of these questions are complete for the class $\exists\mathbb{R}$, defined by the Existential Theory of the Reals, or its complement $\forall\mathbb{R}$; in particular, each problem is (co)NP-hard. One of these nine results--that realization of unit-distance graphs is $\exists\mathbb{R}$-complete--was shown previously by Schaefer (2013), but the other eight are new. We strengthen several prior results. Matchstick graph realization was known to be NP-hard (Eades \& Wormald 1990, or Cabello et al.\ 2007), but its membership in NP remained open; we show it is complete for the (possibly) larger class $\exists\mathbb{R}$. Global rigidity of graphs with edge lengths in $\{1,2\}$ was known to be coNP-hard (Saxe 1979); we show it is $\forall\mathbb{R}$-complete. The majority of the paper is devoted to proving an analog of Kempe's Universality Theorem--informally, "there is a linkage to sign your name"--for globally noncrossing linkages. In particular, we show that any polynomial curve $\phi(x,y)=0$ can be traced by a noncrossing linkage, settling an open problem from 2004. More generally, we show that the regions in the plane that may be traced by a noncrossing linkage are precisely the compact semialgebraic regions (plus the trivial case of the entire plane). Thus, no drawing power is lost by restricting to noncrossing linkages. We prove analogous results for matchstick linkages and unit-distance linkages as well.
翻译:我们精确确定了图实现、图刚性及图全局刚性在应用于三类图时的计算复杂度:第一类是“全局非交叉”图,其在所有构型中均避免交叉;第二类是火柴杆图,其边长为单位长度且仅考虑非交叉构型;第三类是无限制图(允许交叉)且边长为单位长度(或在全局刚性情形下,边长属于集合$\{1,2\}$)。我们证明这九个问题均对由实数存在理论定义的复杂性类$\exists\mathbb{R}$或其补类$\forall\mathbb{R}$是完全的;特别地,每个问题都是(共)NP难的。其中一项结果——单位距离图的实现是$\exists\mathbb{R}$完全的——已由Schaefer(2013年)证明,但其余八项均为新结果。我们强化了多项已有结论。火柴杆图实现已知是NP难的(Eades与Wormald 1990年,或Cabello等人2007年),但其是否属于NP类一直悬而未决;我们证明该问题对(可能)更大的类$\exists\mathbb{R}$是完全的。边长为$\{1,2\}$的图的全局刚性已知是coNP难的(Saxe 1979年);我们证明该问题是$\forall\mathbb{R}$完全的。本文主要篇幅致力于证明Kempe普适性定理在全局非交叉连杆机构中的类比——通俗而言,即“存在能签写你名字的连杆机构”。具体而言,我们证明任意多项式曲线$\phi(x,y)=0$均可由非交叉连杆机构描绘,这解决了2004年提出的一个公开问题。更一般地,我们证明可由非交叉连杆机构描绘的平面区域恰好是紧致半代数区域(加上整个平面的平凡情形)。因此,限制于非交叉连杆机构不会损失绘图能力。我们针对火柴杆连杆机构和单位距离连杆机构也证明了类似结果。