Log-based cyber threat hunting has emerged as an important solution to counter sophisticated cyber attacks. However, existing approaches require non-trivial efforts of manual query construction and have overlooked the rich external knowledge about threat behaviors provided by open-source Cyber Threat Intelligence (OSCTI). To bridge the gap, we build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI. Built upon mature system auditing frameworks, ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors, and (4) an efficient query execution engine to search the big system audit logging data.
翻译:以逻辑为基础的网络威胁狩猎已成为应对复杂网络攻击的重要解决办法。然而,现有办法要求非人工查询努力,忽视了开放源码网络威胁情报(OSCTI)提供的关于威胁行为的丰富外部知识。 为了缩小差距,我们建立了“威胁搜索”系统,该系统便利使用OSCTI的计算机系统进行网络威胁狩猎。在成熟的系统审计框架的基础上,“威胁搜索”提供:(1) 一个不受监管、轻巧和准确的NLP管道,从无结构的 OSCTI 文本中提取结构性威胁行为;(2) 一个简明和明确的域别查询语言“TBQL”,用于搜索恶意系统活动;(3) 一个查询合成机制,自动合成从提取的威胁行为中获取的TBQL查询;(4) 一个高效的查询执行引擎,以搜索大系统审计记录数据。