We introduce a novel, end-to-end learnable, differentiable non-rigid tracker that enables state-of-the-art non-rigid reconstruction by a learned robust optimization. Given two input RGB-D frames of a non-rigidly moving object, we employ a convolutional neural network to predict dense correspondences and their confidences. These correspondences are used as constraints in an as-rigid-as-possible (ARAP) optimization problem. By enabling gradient back-propagation through the weighted non-linear least squares solver, we are able to learn correspondences and confidences in an end-to-end manner such that they are optimal for the task of non-rigid tracking. Under this formulation, correspondence confidences can be learned via self-supervision, informing a learned robust optimization, where outliers and wrong correspondences are automatically down-weighted to enable effective tracking. Compared to state-of-the-art approaches, our algorithm shows improved reconstruction performance, while simultaneously achieving 85 times faster correspondence prediction than comparable deep-learning based methods. We make our code available.
翻译:我们引入了新型的、端到端可学习的、不同的、非硬化的跟踪器,通过学习到的强力优化,能够进行最先进的非硬化重建。鉴于一个非硬性移动物体的两个输入的 RGB-D 框架,我们使用一个革命性神经网络来预测密集的通信及其信任。这些通信被作为“硬性(ARAP)”优化问题的制约。通过加权的非线性最小方块解析器,让我们能够进行梯度反向分析,我们能够以端到端的方式学习信件和信任,这样它们就最适于进行非硬性跟踪。在这个配方程式下,通信信心可以通过自我监督来学习,为学习到的强性优化提供信息,在这种情况下,外部和错误的通信会自动减缩,以便有效跟踪。与最先进的方法相比,我们的算法显示重建业绩有所改善,同时实现85倍于可比的深层学习方法的通信预测。我们提供了我们的代码。