Transfer learning is critical for efficient information transfer across multiple related learning problems. A simple, yet effective transfer learning approach utilizes deep neural networks trained on a large-scale task for feature extraction. Such representations are then used to learn related downstream tasks. In this paper, we investigate transfer learning capacity of audio representations obtained from neural networks trained on a large-scale sound event detection dataset. We build and evaluate these representations across a wide range of other audio tasks, via a simple linear classifier transfer mechanism. We show that such simple linear transfer is already powerful enough to achieve high performance on the downstream tasks. We also provide insights into the attributes of sound event representations that enable such efficient information transfer.
翻译:转让学习对于在多个相关学习问题之间有效传递信息至关重要。一个简单而有效的转让学习方法利用了经过大规模地物提取任务培训的深层神经网络。然后,利用这种表述方法学习相关的下游任务。在本文件中,我们调查从神经网络获得的关于大规模可靠事件探测数据集培训的音频表现的转移学习能力。我们通过一个简单的线性分类器传输机制,建立并评价其他各种音频任务中的这些表述。我们表明,这种简单的线性转移已经足够强大,足以在下游任务上取得高绩效。我们还深入了解能够有效传递信息的可靠事件表现的属性。