With the explosive 3D data growth, the urgency of utilizing zero-shot learning to facilitate data labeling becomes evident. Recently, methods transferring language or language-image pre-training models like Contrastive Language-Image Pre-training (CLIP) to 3D vision have made significant progress in the 3D zero-shot classification task. These methods primarily focus on 3D object classification with an aligned pose; such a setting is, however, rather restrictive, which overlooks the recognition of 3D objects with open poses typically encountered in real-world scenarios, such as an overturned chair or a lying teddy bear. To this end, we propose a more realistic and challenging scenario named open-pose 3D zero-shot classification, focusing on the recognition of 3D objects regardless of their orientation. First, we revisit the current research on 3D zero-shot classification, and propose two benchmark datasets specifically designed for the open-pose setting. We empirically validate many of the most popular methods in the proposed open-pose benchmark. Our investigations reveal that most current 3D zero-shot classification models suffer from poor performance, indicating a substantial exploration room towards the new direction. Furthermore, we study a concise pipeline with an iterative angle refinement mechanism that automatically optimizes one ideal angle to classify these open-pose 3D objects. In particular, to make validation more compelling and not just limited to existing CLIP-based methods, we also pioneer the exploration of knowledge transfer based on Diffusion models. While the proposed solutions can serve as a new benchmark for open-pose 3D zero-shot classification, we discuss the complexities and challenges of this scenario that remain for further research development. The code is available publicly at https://github.com/weiguangzhao/Diff-OP3D.


翻译:暂无翻译

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2021年7月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员