We revisit the performance of the classic gradual magnitude pruning (GMP) baseline for large language models, focusing on the classic BERT benchmark on various popular tasks. Despite existing evidence in the literature that GMP performs poorly, we show that a simple and general variant, which we call GMP*, can match and sometimes outperform more complex state-of-the-art methods. Our results provide a simple yet strong baseline for future work, highlight the importance of parameter tuning for baselines, and even improve the performance of the state-of-the-art second-order pruning method in this setting.


翻译:我们重新审视了大型语言模型经典渐进规模裁剪基准(GMP)的绩效,重点是典型的BERT基准(各种流行任务 ) 。 尽管文献中现有证据表明GMP表现不佳,但我们发现,我们称之为GMP* ( GMP* ) 的简单而一般的变体可以匹配,有时甚至优于更复杂的最先进方法。 我们的结果为未来工作提供了一个简单而有力的基准,强调了参数调整对基线的重要性,甚至改进了在这一环境下最先进的二级裁剪方法的性能。

0
下载
关闭预览

相关内容

何建模和处理国际会议(GMP)是关于几何建模的数学和计算方面的年度国际会议系列和模拟。GMP会议系列为研究人员和从业人员提供了一个交流新思想,讨论新应用和提出新解决方案的论坛。几何数据的建模和处理是许多计算机应用程序的基础,包括计算机图形学,计算机视觉,CAD / CAM,医学成像,工程分析,机器人技术,增材制造和科学计算。 官网地址:http://dblp.uni-trier.de/db/conf/gmp/
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月10日
Arxiv
16+阅读 · 2021年11月27日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员