Pipelining between data loading and computation is a critical tensor program optimization for GPUs. Multi-stage pipelining across the multi-level buffer hierarchy of GPU is particularly indispensable on the latest NVIDIA Ampere GPUs to reduce resource idleness and guarantee kernel performance. Currently, people rely on libraries written by experts such as cuBLAS to access the pipelining optimization instead of through a tensor program transformation, which is inextensible to new operators and un-composable with prior tensor compiler optimizations. We present ALCOP, an automatic pipelining framework based on TVM infrastructure that overcomes three critical obstacles in generating code for pipelining: detection of pipelining-applicable buffers, program transformation for multi-level multi-stage pipelining, and efficient schedule parameter search by incorporating static analysis. Experiments show that ALCOP can generate programs with 1.23x speedup on average (up to 1.73x) over vanilla TVM. On end-to-end models, ALCOP can improve upon TVM by up to 1.18x, and XLA by up to 1.64x. Besides, our performance model significantly improves the efficiency of the schedule tuning process and can find schedules with 99% the performance given by exhaustive search while costing 40x fewer trials.


翻译:数据加载和计算之间的管道是 GPU 中一个至关重要的强点程序优化 。 GPU 多级缓冲层的多级管道配置对于最新的 NVIDIA A Ampere GPU 尤其必不可少, 以减少资源闲置和保证内核性能。 目前, 人们依靠CUBLAS 等专家撰写的图书馆访问管道优化, 而不是通过一个 Exor 程序转换, 这对于新操作员来说是无法扩展的, 并且无法与先前的 Exronor 编译器优化兼容 。 我们向 ALCOP 展示一个基于 TVM 基础设施的自动管道排气框架, 克服了生成管道代码的三个关键障碍: 检测管线性缓冲适用缓冲、 多级多级管道转换程序, 以及通过纳入静态分析来进行有效的时间表搜索 。 实验显示 ALCOP 能够生成平均1. 23x 速度超过 Vanilla TVM ( 1.73x) 的节目。 关于终端到 优化模型, ALCOP 可以在 TVM 上改进到 1. 18x, 和 XLA 到 1. 64x 上 更新到 1. 64x 。 此外 的自动改进 。 此外, 更新到 1. 64x 改进我们的工作进度到 1. 64x 大幅改进了 的进度, 改进了 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年7月29日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
15+阅读 · 2020年2月6日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员