We consider the problem of Byzantine fault-tolerance in distributed multi-agent optimization. In this problem, each agent has a local cost function, and in the fault-free case, the goal is to design a distributed algorithm that allows all the agents to find a minimum point of all the agents' aggregate cost function. We consider a scenario where up to $f$ (out of $n$) agents might be Byzantine faulty, i.e., these agents may not follow a prescribed algorithm and may share arbitrary information regarding their local cost functions. In the presence of such faulty agents, a more reasonable goal is to design an algorithm that allows all the non-faulty agents to compute, either exactly or approximately, the minimum point of only the non-faulty agents' aggregate cost function. From recent work we know that a deterministic algorithm can compute a minimum point of the non-faulty agents' aggregate cost exactly if and only if the non-faulty agents' cost functions satisfy a certain redundancy property named $2f$-redundancy. However, the $2f$-redundancy property can only be guaranteed in ideal systems free from noises, and thus, exact fault-tolerance is unsuitable for many practical settings. In this paper, we consider the problem of approximate fault-tolerance - a generalization of exact fault-tolerance where the goal is to only compute an approximation of a minimum point. We define approximate fault-tolerance formally as $(f, \, \epsilon)$-resilience where $\epsilon$ is the approximation error, and we show that it can be achieved under a weaker redundancy condition than $2f$-redundancy. In the special case when the cost functions are differentiable, we analyze the approximate fault-tolerance of the distributed gradient-descent method equipped with a gradient-filter; such as comparative gradient elimination (CGE) or coordinate-wise trimmed mean (CWTM).
翻译:我们考虑的是Byzantine在分布式多试剂优化中对Byzantine错误的容忍度问题。在这个问题上,每个代理商都有当地的成本功能,在无过失的情况下,目标是设计一个分布式算法,使所有代理商都能找到所有代理商总成本函数的最小点。我们考虑的是一种假设,即最高为美元(美元中的美元)的代理商可能是Byzantine错误,即这些代理商可能不遵循一种规定的算法,并可能分享关于其当地成本功能的任意信息。在这个问题中,每个代理商都有当地的成本功能,一个更合理的目标是设计一种算法,让所有非过失代理商能够完全或大致地(美元中的)理解,只有非过失代理商总的成本函数才能找到最低点。根据最近的工作,确定一个非腐败代理商总成本的最小点,如果非腐败代理商的成本功能能满足一个叫做2美元-冗余的某部分。然而,2美元中的特殊错误性财产的计算点只能用来在理想的系统中确定一个不固定的准确的准确度。