In this work, we present linear exact repair schemes for one or two erasures in decreasing monomial-Cartesian codes DM-CC, a family of codes which provides a framework for polar codes. In the case of two erasures, the positions of the erasures should satisfy a certain restriction. We present families of augmented Reed-Muller (ARM) and augmented Cartesian codes (ACar) which are families of evaluation codes obtained by strategically adding vectors to Reed-Muller and Cartesian codes, respectively. We develop repair schemes for one or two erasures for these families of augmented codes. Unlike the repair scheme for two erasures of DM-CC, the repair scheme for two erasures for the augmented codes has no restrictions on the positions of the erasures. When the dimension and base field are fixed, we give examples where ARM and ACar codes provide a lower bandwidth (resp., bitwidth) in comparison with Reed-Solomon (resp., Hermitian) codes. When the length and base field are fixed, we give examples where ACar codes provide a lower bandwidth in comparison with ARM. Finally, we analyze the asymptotic behavior when the augmented codes achieve the maximum rate.
翻译:在这项工作中,我们为一个或两个在减少单分子-卡尔泰斯编码中减少的单分子-卡尔泰斯编码DM-CC(一种为极地编码提供框架的编码组成的系列)提出线性精确修复计划;在两个删除时,消化装置的位置应满足一定的限制;我们为两个删除装置提供直线精确修复计划;我们为一个或两个在减少单分子-卡尔泰斯编码中减少单分子-卡尔泰斯编码中增加矢量而获得的评估编码(阿卡拉)家庭提出直线精确修复计划;我们为这些增加编码的家庭为一或两个删除装置DM-CC(DM-CC),而与两个删除编码的修复计划不同,在两个删除装置中,消化装置的位置不应受到任何限制;当尺寸和基场固定时,我们举例说明亚美尼亚和阿卡尔的编码与Reed-Solomon(resp.,Hermitian)编码相比,带宽度较低带宽(readth),我们为这些编码。当长度和基字段固定时,我们举例子,当ACar编码在与我们进行最大程度分析时,则提供最低的带宽度时,我们最后分析。