Our world is ambiguous and this is reflected in the data we use to train our algorithms. This is especially true when we try to model natural processes where collected data is affected by noisy measurements and differences in measurement techniques. Sometimes, the process itself can be ambiguous, such as in the case of RNA folding, where a single nucleotide sequence can fold into multiple structures. This ambiguity suggests that a predictive model should have similar probabilistic characteristics to match the data it models. Therefore, we propose a hierarchical latent distribution to enhance one of the most successful deep learning models, the Transformer, to accommodate ambiguities and data distributions. We show the benefits of our approach on a synthetic task, with state-of-the-art results in RNA folding, and demonstrate its generative capabilities on property-based molecule design, outperforming existing work.
翻译:我们的世界是模棱两可的,这反映在我们用来培训算法的数据中。当我们试图模拟自然过程时,当所收集的数据受到噪音测量和测量技术差异的影响时,情况尤其如此。有时,这一过程本身也可能是模棱两可的,例如RNA折叠,一个核核糖酸序列可以折叠到多个结构中。这种模棱两可的表示,预测模型应该具有类似的概率特征,以与其模型的数据相匹配。因此,我们提出一个等级潜值分布,以加强最成功的深层次学习模型之一,即变异器,以适应模糊和数据分布。我们展示了我们在合成任务上的做法的好处,在RNA折叠中取得最新的结果,并展示其在基于产权的分子设计上的基因化能力,优于现有的工作。