Pretrained language models are remarkably effective in aligning with human brain responses elicited by natural language stimuli, positioning them as promising model organisms for studying language processing in the brain. However, existing approaches for both estimating and improving this brain alignment are participant-dependent and highly affected by the amount of data available per participant, hindering both generalization to new participants and population-level analyses. In this work, we address these limitations by introducing a scalable, generalizable brain-tuning method, in which we fine-tune pretrained speech language models to jointly predict fMRI responses from multiple participants. We demonstrate that the resulting brain-tuned models exhibit strong individual brain alignment while generalizing across participants. Specifically, our method leads to 1) a 5-fold decrease in the amount of fMRI data needed to predict brain data from new participants, 2) up to a 50% increase in the overall brain alignment, and 3) strong generalization to new unseen datasets. Furthermore, this multi-participant brain-tuning additionally improves downstream performance on semantic tasks, suggesting that training using brain data from multiple participants leads to more generalizable semantic representations. Taken together, these findings demonstrate a bidirectional benefit between neuroscience and AI, helping bridge the gap between the two fields. We make our code and models publicly available at https://github.com/bridge-ai-neuro/multi-brain-tuning.


翻译:预训练语言模型在与自然语言刺激引发的人类大脑响应进行对齐方面表现出显著的有效性,这使其成为研究大脑语言处理的有前景的模型生物。然而,现有的用于估计和改善这种脑对齐的方法都依赖于特定参与者,并且受每位参与者可用数据量的影响很大,这阻碍了对新参与者的泛化以及群体层面的分析。在本工作中,我们通过引入一种可扩展、可泛化的脑调优方法来解决这些局限性,该方法通过微调预训练语音语言模型来联合预测来自多位参与者的功能磁共振成像响应。我们证明,由此产生的脑调优模型在展现出强大的个体脑对齐能力的同时,能够跨参与者泛化。具体而言,我们的方法导致:1) 预测新参与者脑数据所需的功能磁共振成像数据量减少5倍;2) 整体脑对齐度提升高达50%;3) 对新的未见数据集具有强大的泛化能力。此外,这种多参与者脑调优还进一步提升了语义任务的下游性能,这表明使用来自多位参与者的大脑数据进行训练能够产生更具泛化性的语义表征。综上所述,这些发现证明了神经科学与人工智能之间的双向益处,有助于弥合这两个领域之间的鸿沟。我们的代码和模型已在 https://github.com/bridge-ai-neuro/multi-brain-tuning 公开提供。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员