Consider the computations at a node in the message passing algorithms. Assume that the node has incoming and outgoing messages $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ and $\mathbf{y} = (y_1, y_2, \ldots, y_n)$, respectively. In this paper, we investigate a class of structures that can be adopted by the node for computing $\mathbf{y}$ from $\mathbf{x}$, where each $y_j, j = 1, 2, \ldots, n$ is computed via a binary tree with leaves $\mathbf{x}$ excluding $x_j$. We have three main contributions regarding this class of structures. First, we prove that the minimum complexity of such a structure is $3n - 6$, and if a structure has such complexity, its minimum latency is $\delta + \lceil \log(n-2^{\delta}) \rceil$ with $\delta = \lfloor \log(n/2) \rfloor$. Second, we prove that the minimum latency of such a structure is $\lceil \log(n-1) \rceil$, and if a structure has such latency, its minimum complexity is $n \log(n-1)$ when $n-1$ is a power of two. Third, given $(n, \tau)$ with $\tau \geq \lceil \log(n-1) \rceil$, we propose a construction for a structure which likely has the minimum complexity among structures with latencies at most $\tau$. Our construction method runs in $O(n^3 \log^2(n))$ time, and the obtained structure has complexity at most (generally much smaller than) $n \lceil \log(n) \rceil - 2$.


翻译:分别考虑在消息传递算法的一个节点上计算 。 假设节点的收发和发送信息 $\ mathbf{x} = (x_ 1, x_ 2,\ ldot, x_n) $ 和 $\ mathbf{y} = (y_ 1, y2, aults, y_n) = 。 在本文件中, 我们调查节点在计算 $\ mathbf{y} $( mathbf{x} $ $, 其中每个 $_ j, j= 1, 2,\ ldots, 美元通过双树来计算, 叶 $\ mathbfsf{x} 美元 和 $xx_j$。 我们在这类结构中有三个主要贡献。 首先, 我们证明这种结构最起码的复杂性是3n - $美元 。 如果一个结构如此复杂, 其最小的值是 $( delta) $ + lcial $, $ (n) lacient $, lacial) a.

0
下载
关闭预览

相关内容

【AAAI2021】 层次图胶囊网络
专知会员服务
82+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
2018: AI in All的元年
专知
3+阅读 · 2018年12月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月20日
VIP会员
相关VIP内容
【AAAI2021】 层次图胶囊网络
专知会员服务
82+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
2018: AI in All的元年
专知
3+阅读 · 2018年12月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员