This paper is motivated by basic complexity and probability questions about permanents of random matrices over finite fields, and in particular, about properties separating the permanent and the determinant. Fix $q = p^m$ some power of an odd prime, and let $k \leq n$ both be growing. For a uniformly random $n \times k$ matrix $A$ over $\mathbb{F}_q$, we study the probability that all $k \times k$ submatrices of $A$ have zero permanent; namely that $A$ does not have full "permanental rank". When $k = n$, this is simply the probability that a random square matrix over $\mathbb{F}_q$ has zero permanent, which we do not understand. We believe that the probability in this case is $\frac{1}{q} + o(1)$, which would be in contrast to the case of the determinant, where the answer is $\frac{1}{q} + Ω_q(1)$. Our main result is that when $k$ is $O(\sqrt{n})$, the probability that a random $n \times k$ matrix does not have full permanental rank is essentially the same as the probability that the matrix has a $0$ column, namely $(1 +o(1)) \frac{k}{q^n}$. In contrast, for determinantal (standard) rank the analogous probability is $Θ(\frac{q^k}{q^n})$. At the core of our result are some basic linear algebraic properties of the permanent that distinguish it from the determinant.
翻译:本文的研究动机源于有限域上随机矩阵积和式的基本复杂度与概率问题,特别是区分积和式与行列式性质的探讨。设 $q = p^m$ 为奇素数的幂次,$k \leq n$ 且二者均趋于增长。对于在 $\mathbb{F}_q$ 上均匀随机选取的 $n \times k$ 矩阵 $A$,我们研究其所有 $k \times k$ 子矩阵的积和式均为零的概率;即 $A$ 不具有“满积和式秩”的概率。当 $k = n$ 时,这等价于随机方阵在 $\mathbb{F}_q$ 上积和式为零的概率,该概率目前尚未被完全理解。我们推测此情形下的概率为 $\frac{1}{q} + o(1)$,这与行列式的情形形成对比——后者的概率为 $\frac{1}{q} + Ω_q(1)$。我们的主要结果表明:当 $k$ 为 $O(\sqrt{n})$ 时,随机 $n \times k$ 矩阵不具有满积和式秩的概率,本质上等同于该矩阵存在零列的概率,即 $(1 +o(1)) \frac{k}{q^n}$。与之相对,对于行列式(标准)秩,相应的概率为 $Θ(\frac{q^k}{q^n})$。我们结果的核心在于积和式区别于行列式的一些基本线性代数性质。