In this paper, we present our solution for the {\it IJCAI--PRICAI--20 3D AI Challenge: 3D Object Reconstruction from A Single Image}. We develop a variant of AtlasNet that consumes single 2D images and generates 3D point clouds through 2D to 3D mapping. To push the performance to the limit and present guidance on crucial implementation choices, we conduct extensive experiments to analyze the influence of decoder design and different settings on the normalization, projection, and sampling methods. Our method achieves 2nd place in the final track with a score of $70.88$, a chamfer distance of $36.87$, and a mean f-score of $59.18$. The source code of our method will be available at https://github.com/em-data/Enhanced_AtlasNet_3DReconstruction.
翻译:在本文中,我们介绍了我们为“IJCAI-PRICAI-20 3D AI挑战:从单一图像重建3D对象”提出的解决方案。我们开发了AtlasNet的变体,该变体用单2D图像,通过2D至3D绘图生成3D点云。为了将性能推向极限,并就关键执行选择提供指导,我们进行了广泛的实验,分析解码器设计和不同设置对正常化、投影和取样方法的影响。我们的方法在最后轨道中位居第二,得分为70.88美元,尚博尔距离36.87美元,平均利得59.18美元。我们方法的来源代码将在https://github.com/em-data/Enhanced_AtlasNet_3Drebuilding上公布。