In this paper, we present a novel methodology to perform Bayesian inference for Cox processes in which the intensity function is driven by a diffusion process. The novelty lies in the fact that no discretization error is involved, despite the non-tractability of both the likelihood function and the transition density of the diffusion. The methodology is based on an MCMC algorithm and its exactness is built on retrospective sampling techniques. The efficiency of the methodology is investigated in some simulated examples and its applicability is illustrated in some real data analyzes.


翻译:在本文中,我们提出了一个新方法,用于对由扩散过程驱动的强度函数的考克斯过程进行贝叶斯式推论,其中的强度函数是由扩散过程驱动的。新颖之处在于,尽管可能性函数和扩散的过渡密度都不可忽略,但没有涉及离散错误。该方法以MCMC算法为基础,其精确性以追溯性取样技术为基础。方法的效率在一些模拟实例中进行了调查,并在一些真实的数据分析中说明了其适用性。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
【干货书】R语言探索性数据分析,218页pdf
专知会员服务
61+阅读 · 2021年9月14日
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
117+阅读 · 2020年5月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月4日
Arxiv
4+阅读 · 2018年4月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员