The development of reusable artificial intelligence (AI) models for wider use and rigorous validation by the community promises to unlock new opportunities in multi-messenger astrophysics. Here we develop a workflow that connects the Data and Learning Hub for Science, a repository for publishing AI models, with the Hardware Accelerated Learning (HAL) cluster, using funcX as a universal distributed computing service. Using this workflow, an ensemble of four openly available AI models can be run on HAL to process an entire month's worth (August 2017) of advanced Laser Interferometer Gravitational-Wave Observatory data in just seven minutes, identifying all four all four binary black hole mergers previously identified in this dataset and reporting no misclassifications. This approach combines advances in AI, distributed computing, and scientific data infrastructure to open new pathways to conduct reproducible, accelerated, data-driven discovery.
翻译:开发可再利用的人工智能(AI)模型,供社区广泛使用和严格验证,这有望在多发体天体物理学中释放新的机会。 我们在此开发了一个工作流程,将数据与科学学习中心(公布AI模型的存放处)与硬件加速学习(HAL)集群(硬件加速学习(HAL)集群)连接起来,将FuncX作为一种普遍的分布式计算服务。 利用这一工作流程,可在HAL上运行四种公开提供的可公开获取的AI模型的组合,在7分钟内处理一个月内(2017年8月)的高级激光干涉仪引力观测台数据,确定本数据集先前确认的所有4个双黑洞合并,并报告没有错误分类。 这种方法结合了AI的进展、分布式计算机和科学数据基础设施,以打开新途径进行可复制、加速和数据驱动的发现。