Uncertainty estimation has been extensively studied in recent literature, which can usually be classified as aleatoric uncertainty and epistemic uncertainty. In current aleatoric uncertainty estimation frameworks, it is often neglected that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model. Since the oracle model is inaccessible in most cases, we propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation. Further, we show a trivial solution in the dual-head based heteroscedastic aleatoric uncertainty estimation framework and introduce a new uncertainty consistency loss to avoid it. For epistemic uncertainty estimation, we argue that the internal variable in a conditional latent variable model is another source of epistemic uncertainty to model the predictive distribution and explore the limited knowledge about the hidden true model. We validate our observation on a dense prediction task, i.e., camouflaged object detection. Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
翻译:在最近的文献中,对不确定性进行了广泛的研究,这些文献通常可以被归类为悬浮性不确定性和偶发性不确定性。在目前的悬浮性不确定性估算框架中,人们常常忽视的是,悬浮性不确定性是数据的一个固有属性,只能用一个不带偏见的或骨骼模型来正确估算。由于在多数情况下,神器模型是无法进入的,我们提议在火车上采用新的抽样和选择战略,以近似用于悬浮性不确定性估算的神器模型。此外,我们在基于双头的超浮性易变性不确定性估算框架中显示了一种微不足道的解决方案,并引入了一种新的不确定性一致性损失来避免它。关于隐性潜在变量模型的内在变量估算,我们说,对于隐含性分布模型和探索关于隐蔽真实模型的有限知识,我们验证了我们对密集的预测任务(即,迷惑性物体探测)的观察。我们的结果表明,我们的解决方案既取得了准确的确定性结果,又提出了可靠的不确定性估算。