In recent years, many spatial-temporal graph convolutional network (STGCN) models are proposed to deal with the spatial-temporal network data forecasting problem. These STGCN models have their own advantages, i.e., each of them puts forward many effective operations and achieves good prediction results in the real applications. If users can effectively utilize and combine these excellent operations integrating the advantages of existing models, then they may obtain more effective STGCN models thus create greater value using existing work. However, they fail to do so due to the lack of domain knowledge, and there is lack of automated system to help users to achieve this goal. In this paper, we fill this gap and propose Auto-STGCN algorithm, which makes use of existing models to automatically explore high-performance STGCN model for specific scenarios. Specifically, we design Unified-STGCN framework, which summarizes the operations of existing architectures, and use parameters to control the usage and characteristic attributes of each operation, so as to realize the parameterized representation of the STGCN architecture and the reorganization and fusion of advantages. Then, we present Auto-STGCN, an optimization method based on reinforcement learning, to quickly search the parameter search space provided by Unified-STGCN, and generate optimal STGCN models automatically. Extensive experiments on real-world benchmark datasets show that our Auto-STGCN can find STGCN models superior to existing STGCN models with heuristic parameters, which demonstrates the effectiveness of our proposed method.
翻译:近些年来,提出了许多空间时钟图综合网络(STGCN)模型,以应对空间时钟网络数据预测问题,这些STGCN模型具有其自身的优势,即每个模型都提出许多有效的操作,并在实际应用中实现良好的预测结果,如果用户能够有效地利用和结合现有模型的优势,那么他们就可以利用现有工作获得更有效的STGCN模型,从而创造更大的价值;然而,由于缺乏域域参数知识,也没有自动系统帮助用户实现这一目标,因此没有这样做;在本文件中,我们填补这一空白并提出Auto-STGCN算法,利用现有模型自动探索高性能STGCN模型的具体情景。具体地说,我们设计了Universal-STG框架,其中概述了现有结构的运作情况,并使用参数来控制每次操作的用途和特征,从而实现STGCN结构的参数化代表性,以及重新组合优势。然后,我们介绍了Auto-CNCNCN, 一种优化的STG方法,用以自动探索具体情景。