The Graphical House Allocation (GHA) problem asks: how can $n$ houses (each with a fixed non-negative value) be assigned to the vertices of an undirected graph $G$, so as to minimize the sum of absolute differences along the edges of $G$? This problem generalizes the classical Minimum Linear Arrangement problem, as well as the well-known House Allocation Problem from Economics. Recent work has studied the computational aspects of GHA and observed that the problem is NP-hard and inapproximable even on particularly simple classes of graphs, such as vertex disjoint unions of paths. However, the dependence of any approximations on the structural properties of the underlying graph had not been studied. In this work, we give a nearly complete characterization of the approximability of GHA. We present algorithms to approximate the optimal envy on general graphs, trees, planar graphs, bounded-degree graphs, and bounded-degree planar graphs. For each of these graph classes, we then prove matching lower bounds, showing that in each case, no significant improvement can be attained unless P = NP. We also present general approximation ratios as a function of structural parameters of the underlying graph, such as treewidth; these match the tight upper bounds in general, and are significantly better approximations for many natural subclasses of graphs. Finally, we investigate the special case of bounded-degree trees in some detail. We first refute a conjecture by Hosseini et al. [2023] about the structural properties of exact optimal allocations on binary trees by means of a counterexample on a depth-$3$ complete binary tree. This refutation, together with our hardness results on trees, might suggest that approximating the optimal envy even on complete binary trees is infeasible. Nevertheless, we present a linear-time algorithm that attains a $3$-approximation on complete binary trees.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月14日
Arxiv
0+阅读 · 2023年9月13日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年9月14日
Arxiv
0+阅读 · 2023年9月13日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
38+阅读 · 2020年12月2日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员