Video generation is an interesting problem in computer vision. It is quite popular for data augmentation, special effect in move, AR/VR and so on. With the advances of deep learning, many deep generative models have been proposed to solve this task. These deep generative models provide away to utilize all the unlabeled images and videos online, since it can learn deep feature representations with unsupervised manner. These models can also generate different kinds of images, which have great value for visual application. However generating a video would be much more challenging since we need to model not only the appearances of objects in the video but also their temporal motion. In this work, we will break down any frame in the video into content and pose. We first extract the pose information from a video using a pre-trained human pose detection and use a generative model to synthesize the video based on the content code and pose code.


翻译:视频生成在计算机视觉中是一个有趣的问题。 它对于数据增强、 移动的特殊效果、 AR/ VR 等来说相当受欢迎。 随着深层次学习的进步, 许多深层次的基因模型被提出来解决这个问题。 这些深层次的基因模型提供在网上使用所有未贴标签的图像和视频, 因为它可以以不受监督的方式学习深度的特征表现。 这些模型还可以产生不同种类的图像, 这些图像对于视觉应用具有巨大的价值。 但是, 生成一个视频将更具挑战性得多, 因为我们需要建模不仅是视频中对象的外观, 而且还要建模它们的时间运动。 在这项工作中, 我们将将视频中的任何框架破碎成内容和布局。 我们首先使用预先训练过的人类外观探测方式从视频中提取外观信息, 并使用一个基因模型来根据内容代码和形状代码合成视频。

0
下载
关闭预览

相关内容

在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
109+阅读 · 2020年3月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月22日
Arxiv
6+阅读 · 2021年3月11日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
5+阅读 · 2018年3月30日
Arxiv
3+阅读 · 2012年11月20日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
109+阅读 · 2020年3月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Top
微信扫码咨询专知VIP会员