This paper presents a method for optimizing object detection models by combining weight pruning and singular value decomposition (SVD). The proposed method was evaluated on a custom dataset of street work images obtained from https://universe.roboflow.com/roboflow-100/street-work. The dataset consists of 611 training images, 175 validation images, and 87 test images with 7 classes. We compared the performance of the optimized models with the original unoptimized model in terms of frame rate, mean average precision (mAP@50), and weight size. The results show that the weight pruning + SVD model achieved a 0.724 mAP@50 with a frame rate of 1.48 FPS and a weight size of 12.1 MB, outperforming the original model (0.717 mAP@50, 1.50 FPS, and 12.3 MB). Precision-recall curves were also plotted for all models. Our work demonstrates that the proposed method can effectively optimize object detection models while balancing accuracy, speed, and model size.
翻译:本文提出了一种通过组合权重裁剪和奇异值分解(SVD)来优化目标检测模型的方法。我们使用从https://universe.roboflow.com/roboflow-100/street-work获取的街景工程图像的自定义数据集来评估了所提出的方法。该数据集由611个训练图像,175个验证图像和87个包含7个类别的测试图像组成。我们比较了优化过的模型与原始未优化模型在帧率,平均精度(mAP@50)和权重大小方面的性能。结果表明,权重裁剪 + SVD模型以0.724的mAP@50、1.48的帧率和12.1 MB的权重大小优于原始模型(0.717的mAP@50,1.50 FPS,和12.3 MB)。我们还为所有模型绘制了精度-召回曲线。我们的工作表明,所提出的方法可以有效地优化目标检测模型,同时平衡精度,速度和模型大小。