Graph analysts cannot directly obtain the global structure in decentralized social networks, and analyzing such a network requires collecting local views of the social graph from individual users. Since the edges between users may reveal sensitive social interactions in the local view, applying differential privacy in the data collection process is often desirable, which provides strong and rigorous privacy guarantees. In practical decentralized social graphs, different edges have different privacy requirements due to the distinct sensitivity levels. However, the existing differentially private analysis of social graphs provide the same protection for all edges. To address this issue, this work proposes a fine-grained privacy notion as well as novel algorithms for private graph analysis. We first design a fine-grained relationship differential privacy (FGR-DP) notion for social graph analysis, which enforces different protections for the edges with distinct privacy requirements. Then, we design algorithms for triangle counting and k-stars counting, respectively, which can accurately estimate subgraph counts given fine-grained protection for social edges. We also analyze upper bounds on the estimation error, including k-stars and triangle counts, and show their superior performance compared with the state-of-the-arts. Finally, we perform extensive experiments on two real social graph datasets and demonstrate that the proposed mechanisms satisfying FGR-DP have better utility than the state-of-the-art mechanisms due to the finer-grained protection.


翻译:图表分析员无法直接在分散化的社会网络中获得全球结构,而分析这样一个网络需要从个人用户那里收集对社会图的当地观点。由于用户之间的边缘可能揭示当地观点中的敏感社会互动,因此在数据收集过程中应用不同的隐私通常是可取的,这为隐私提供了有力和严格的保障。在实际分散化的社会图表中,不同的边缘有不同的隐私要求,因为不同的敏感度不同。然而,现有的社会图的差别化私人分析为所有边缘提供了相同的保护。为解决这一问题,这项工作还提出了一个精细的隐私概念以及私人图表分析的新算法。我们首先为社会图分析设计了一个精细化的区别关系隐私(FGR-DP)概念,该概念对有不同隐私要求的边缘实施不同的保护。然后,我们为三角点和K星座分别设计了不同的隐私要求。然而,它可以精确地估计对社会边缘给予的精细度保护的子。为了解决这个问题,我们还分析了估算错误的上限,包括Ktars和三角计数,以及私人图表分析。我们首先设计出它们优美的绩效,而比州级的州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-级-级-级-级-级-州-州-州-州-州-级-级-级-级-级-级-级-级-级-级-级-级-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员