Terahertz (THz) systems are capable of supporting ultra-high data rates thanks to large bandwidth, and the potential to harness high-gain beamforming to combat high pathloss. In this paper, a novel quantum sensing (Ghost Imaging (GI)) based beam training is proposed for Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface (STAR RIS) aided THz multi-user massive MIMO systems. We first conduct GI by surrounding 5G downlink signals to obtain 3D images of the environment including users and obstacles. Based on the information, we calculate the optimal position of the UAV-mounted STAR by the proposed algorithm. Thus the position-based beam training can be performed. To enhance the beam-forming gain, we further combine with channel estimation and propose a semi-passive structure of the STAR and ambiguity elimination scheme for separated channel estimation. Thus the ambiguity in cascaded channel estimation, which may affect optimal passive beamforming, is avoided. The optimal active and passive beamforming are then carried out and data transmission is initiated. The proposed BS sub-array and sub-STAR spatial multiplexing architecture, optimal active and passive beamforming, digital precoding, and optimal position of the UAV- mounted STAR are investigated jointly to maximize the average achievable sum rate of the users. Moreover, the cloud radio access networks (CRAN) structured 5G downlink signal is proposed for GI with enhanced resolution. The simulation results show that the proposed scheme achieves beam training and separated channel estimation efficiently, and increases the spectral efficiency dramatically compared to the case when the STAR operates with random phase.
翻译:Terahertz (Thz) 系统能够通过大型带宽支持超高数据率,并有可能利用高增益波束来应对高路径损失。在本文件中,提议为同时传输和反映可重新配置的智能表面(STAR RIS) 辅助THZ多用户大型MIIM系统同时开展新型量子传感器(Ghost Imaging (Ghost)) 光束培训。我们首先通过环绕5G下链接信号来获取环境的3D信号,包括用户和障碍。根据信息,我们根据拟议算法计算了UAV 升离离离电的电路甚低路径。因此,可以进行基于位置的量感测(Ghost Imaging image (Ghost Imaging (Ghost)) 光束培训。为了提高波束成收益,我们进一步结合了频道估算,并提出了一条半被动度结构,排除系统前的系统。因此,我们避免了级频道估算的模糊性模糊性,这可能会影响最佳的被动成形。 最佳的动态和被动成形,然后,我们进行,然后进行,然后进行云化,然后进行数据转换,数据转换为S-S-AVS-S-SAVS 最佳的系统升级升级的系统升级的升级的升级和升级的升级的升级的升级的升级的升级的升级的升级的升级的系统将显示为S-S-S-AVS-S 和升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的系统。