This article explores how the 'rules in use' from Ostrom's Institutional Analysis and Development Framework (IAD) can be developed as a context analysis approach for AI. AI risk assessment frameworks increasingly highlight the need to understand existing contexts. However, these approaches do not frequently connect with established institutional analysis scholarship. We outline a novel direction illustrated through a high-level example to understand how clinical oversight is potentially impacted by AI. Much current thinking regarding oversight for AI revolves around the idea of decision makers being in-the-loop and, thus, having capacity to intervene to prevent harm. However, our analysis finds that oversight is complex, frequently made by teams of professionals and relies upon explanation to elicit information. Professional bodies and liability also function as institutions of polycentric oversight. These are all impacted by the challenge of oversight of AI systems. The approach outlined has potential utility as a policy tool of context analysis aligned with the 'Govern and Map' functions of the National Institute of Standards and Technology (NIST) AI Risk Management Framework; however, further empirical research is needed. Our analysis illustrates the benefit of existing institutional analysis approaches in foregrounding team structures within oversight and, thus, in conceptions of 'human in the loop'.
翻译:暂无翻译